
P1: GVG/LOV P2: GXD

Journal of Science Education and Technology pp520-jost-375355 May 13, 2002 14:25 Style file version Oct. 23, 2000

FOR
PROOFREADIN

G
ONLY

Journal of Science Education and Technology, Vol. 11, No. 3, September 2002 ( C© 2002)

What Do We Expect From Students’ Physics
Laboratory Experiments?

Ricardo Trumper1,2

We want physics specialized high school and college students to think like physicists, and this
involves an understanding of the scientific methods of inquiry and the ability to use these
methods in their own investigations. In order to do that, students have to be made aware
that no experimental result has any physical meaning unless an estimate of the uncertainty
or precision is assigned to it. In this paper, we describe two simple experiments in which high
school and college students measure physical constants, and make an easy analysis of their
experimental data by applying the tools offered by microcomputers.

KEY WORDS: experimental uncertainties; spreadsheet analysis; measurement of refractive index;
verification of Coulomb’s Law.

INTRODUCTION

Access to laboratories and experiences of inquiry
have long been recognized as important aspects of
school and college science. Most of the curricula de-
veloped in the 1960s and 1970s were designed to make
laboratory experiences the core of the science learn-
ing process (Shulman and Tamir, 1973). Science in the
laboratory was intended to provide experience in the
manipulation of instruments and materials, which was
also thought to help students in the development of
their conceptual understanding.

It is hard to imagine learning to do science, or
learning about science in general, without doing lab-
oratory or fieldwork. Since experimentation underlies
all scientific knowledge and understanding, laborato-
ries are wonderful settings for teaching and learning
science.

It is widely agreed that high school and col-
lege science education should provide science (chem-
istry, biology, or physics) specialized students with
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an understanding, at an appropriate level, of the
scientific account of the natural world and of the
processes of scientific inquiry (Black, 1993). As
Lubben and Millar (1996) claim, “the two are related:
understanding . . . some of the facts, concepts, laws and
theories of accepted science involves an appreciation
of the ways in which such knowledge came to be es-
tablished and of our warrants for accepting it as valid.”
As a result, practical laboratory work is widely used as
a teaching strategy and is also seen as crucial in devel-
oping an understanding of the procedures of scientific
inquiry.

Let us consider for a moment what it would mean
to develop students’ understanding of scientific meth-
ods of inquiry and their ability to use these meth-
ods in their own investigations. According to Millar
(1998),

we would be aiming, through our teaching, to help
students become more “expert” in selecting produc-
tive questions to investigate, designing suitable ex-
periments to collect data which bear on these ques-
tions, making a planned series of observations or
measurements with due attention to accuracy, valid-
ity and reliability, analyzing and interpreting these
data to reach a conclusion which is supported by
the data, and being able to evaluate the quality
of the support which their evidence gives to their
conclusion.
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DEFINING APPROPRIATE TERMS IN THE
ANALYSIS OF EXPERIMENTAL DATA

In order to deal with experimental data in a
proper way, we must define precisely the different
terms we use in the estimation of their accuracy. In
this paper we choose basically Thomsen’s terminol-
ogy (Thomsen, 1997), that is, we define

1. resolution of an instrument as “the fineness of
detail revealed by the measuring instrument,”

2. precision or uncertainty of a series of measure-
ments as “a measure of the agreement among
the repetitive determinations,” which is “usu-
ally quantified as the standard deviation of the
measured values.” (For a simple illustration of
the relationship between statistics and mea-
surement, see Kagan, 1989.) The precision or
uncertainty of a series of measurements de-
pends on how well we can overcome random
errors, that is, the fluctuations in observations
that yield results that differ between repeated
measurements, and

3. accuracy of a measurement (or its average)
as “its relation to a ‘true,’ ‘nominal,’ ‘agreed
upon,’ or ‘accepted’ value,” which “is often
expressed as a deviation or percent deviation
from the known value.”

It is also important to take into account Roberts’
assertion (Roberts, 1983) that “when an experimenter
determines the range of likely values for a quantity,
he or she determines a best estimate for it, along with
an experimental uncertainty,” that is the precision of
the measurements. In a physics experiment we do not
determine “true” values, but ranges within which true
values probably lie.

The question that students should be encouraged
to ask regularly is how well they trust the number
they obtained in their measurement. Quantitatively,
the degree of trust is expressed by the resolution of the
instrument used in an individual measurement, and by
the precision obtained in a series of measurements (its
standard deviation).

No single measurement can be better than the in-
strumental limitations, that is, there are always scale
errors that represent the highest resolution possible
with a given instrument; for instance a meter stick
graduated in millimeter marks has a resolution of
about 0.5 mm. If we can do repeated measurements
of a quantity (for example the free-fall time of a body
dropped from a given height), we can improve the
precision of the measurement by calculating its best

estimate (tbest) and its uncertainty or absolute exper-
imental error (δt). In many cases in which we make
calculations that include multiplication or division of
measured quantities, we use the fractional error, for
example, δt/tbest.

Unfortunately, some authors (Johnston and
Schroeer, 1992; Robinson, 1991; Thomsen, 1997) still
guide students to perform what they call “error anal-
ysis,” that is, to calculate the percent error of their
measurement according to the expression:

% Error = |Measured value − Accepted value|
× 100/Accepted value

where the “‘measured value’ is the student’s experi-
mental value, which is expected to be different from
the accepted value (otherwise, why would we need
to calculate the error?) and in some way ‘incorrect’”
(Deacon, 1992). This may be the reason that students
so often come to the conclusion that physics, while it
purports to be an exact science, never actually works
in practice, or at least not for them. Thus, the old and
unsuccessful phrase “If it doesn’t work, it’s physics”
(T. D. M., 1973), may lead students “to decide, at best,
that labs are a waste of time, and at worst, that physics
makes no sense” (Roberts, 1983).

We want physics specialized high school and col-
lege students to think like physicists, and this involves
an understanding of the scientific methods of inquiry
and the ability to use these methods in their own
investigations. In order to do that, students have to
be made aware that no experimental result has any
physical meaning unless an estimate of the uncer-
tainty or precision is assigned to it. In the follow-
ing sections, we describe two simple experiments in
which high school and college students measure phys-
ical constants, and make an easy analysis of their
experimental data by applying the tools offered by
microcomputers.

SNELL’S LAW: MEASURING THE INDEX
OF REFRACTION FOR ACRYLIC

The equipment needed for the experiment in-
cludes an optics bench, a ray table and base, a slit
plate, a cylindrical lens, a light source, a component
holder, and a slit mask, like those provided by the
Pasco3 Introductory Optics System (see Fig. 1).

3Pasco Scientific, P.O. Box 619011, 10101 Foothills Boulevard,
Roseville, California (www.pasco.com).
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Fig. 1. Equipment setup for Snell’s Law experiment.

The students set up the equipment and adjusted
the components so that a single ray of light passes di-
rectly through the center of the ray table degree scale,
and they aligned the flat surface of the cylindrical lens
with the line labeled “component.” To measure how
the angle of refraction of the ray of light depends on
its angle of incidence they rotated the ray table and
observed the refracted ray for various angles of inci-
dence, from both sides of the normal. Then they intro-
duced these data in Columns A (angle of incidence)
and B (average angle of refraction) of a Microsoft
Excel spreadsheet (see Fig. 2).

According to Snell’s Law

n1 sin(θ1) = n2 sin(θ2) (1)

Fig. 2. The spreadsheet showing the results of the Snell’s Law experiment, the needed calcu-
lations and data analysis.

where n1 and n2 are the indices of refraction of the two
media through which the light is passing, and θ1 and θ2

are the angles of incidence and refraction, respectively
(see Fig. 1).

In order to check the experimental results,
students calculated the sine of both angles, put
them in Columns C and D, respectively, and plot-
ted a graph with its corresponding best-fit line (see
Fig. 3).

As expected they got a straight line, whose slope
has to be the inverse value of the index of refraction
of the acrylic, assuming that the index of refraction
for air is equal to 1. That is,

sin(θ2) =
(

1
n2

)
sin(θ1) (2)
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Fig. 3. Graph of the measured sinus of the refracted angle as a function of the sinus of
the incident angle.

Students calculated the slope of the straight line
in Column E and the corresponding values of the
index of refraction of acrylic in Column F (see
Fig. 2). Its best estimate [AVERAGE(F4:F11)] was
calculated in Cell F13, and the precision of the
measurements [STDEV(F4:F11)] was calculated in
Cell F14.

Since the “accepted” value of the index of refrac-
tion of acrylic is 1.5, we can see that it lies within the
range determined by the best estimate and the preci-
sion of students’ measurement. The remaining ques-
tion is how well students may trust in the number they
obtained in their measurement, that is, what is the per-
centage precision they obtained. In this case we got
about 5% (0.07/1.46), a very well justified precision if
we take into account that the highest resolution of the
instrument used is 1◦ (0.5◦ for the light ray width and
0.5◦ for the fineness of detail of the ray table), that
is, a resolution that varies from 1.5 to 12.5% for the
measured angles.

COULOMB’S LAW: MEASURING
COULOMB’S CONSTANT

The equipment needed for the experiment is
the Pasco Model ES-9070 Coulomb Balance, a deli-
cate torsion balance that can be used to investigate
the force between charged objects (see Fig. 4). A con-
ductive sphere is mounted on a rod, counterbalanced,
and suspended from a thin torsion wire. An identical
sphere is mounted on a slide assembly so it can be
positioned at various distances from the suspended

sphere. To perform the experiment, both spheres are
charged with a stable kilovolt power supply, and the
sphere on the slide assembly is placed at fixed dis-
tances from the equilibrium position of the suspended
sphere. The electrostatic force between the spheres
causes the torsion wire to twist. The student then
twisted the torsion wire to bring the balance back to
its equilibrium position. The angle through which the
torsion wire must be twisted to reestablish equilib-
rium is directly proportional to the electrostatic force
between the spheres.

All the variables of the Coulomb relationship
(F = Kq1q2/R2) can be varied and measured. In
this experiment students verified the inverse square
law, while keeping charges constant, and measured
Coulomb’s constant K.

In the first part of the experiment, students set
up the Coulomb Balance as shown in Fig. 4. They set
the torsion dial to 0◦ and zeroed the torsion balance
by rotating the bottom torsion wire retainer until the
pendulum assembly was at its zero displacement po-
sition as indicated by the index marks.

With the spheres at maximum separation they
charged both to a potential of 6 kV, using a charging
probe that includes a 20 M� resistor for safety rea-
sons. Then they put the sliding sphere at a position of
20 cm (distance between the center of spheres), and
adjusted the torsion knob as necessary to balance the
forces and bring the pendulum back to the zero po-
sition. They repeated this measurement three times
and recorded the distance R and the average angle
θavg. They did the same procedure for various dis-
tances between the spheres and introduced the data
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Fig. 4. The Coulomb Balance setup for the experiment.
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Fig. 5. The spreadsheet showing the results of the Coulomb’s Law experiment, the
needed calculations and data analysis.

in Columns A and C of a spreadsheet (see Fig. 5).
Students calculated the inverse square of the distance
and introduced it in Column B.

In the second part of the experiment, students
measured the torsion constant of the torsion wire
(ktor), in order to enable them to convert their tor-
sion angles into measurements of force. To accom-
plish that they turned the torsion balance on its side,
supporting it with the lateral support bar, as shown
in Fig. 6.

They zeroed the torsion balance by rotating the
torsion dial until the index marks were aligned, and
recorded the angle of the degree plate. They placed
a 20 mg mass on the center line of the conductive
sphere, turned the degree knob as required to bring
the index marks back into alignment and read the
torsion angle on the degree scale. They repeated this

Fig. 6. Setup for calibrating the torsion balance and measuring the
torsion constant.

measurement for various masses and introduced the
data in Columns A and B in a separated sheet of the
spreadsheet (see Fig. 7).

Finally they calculated the weight of each mass
(Column C in Fig. 7) and plotted a graph of the ex-
erted force as a function of the angle (see Fig. 8) in
order to corroborate the proportionality of these two
variables. The proportion constant (ktor), that is the
slope of the straight line, was calculated in Column D
(see Fig. 7). Its best estimate [AVERAGE(D3:D6)]
was calculated in Cell D8, and the precision of the
measurements [STDEV(D3:D6)] was calculated in
Cell D9, obtaining a percentage precision of about
8.5% (2.35 × 10−7/2.77 × 10−6).

Having the best estimate of the torsion con-
stant, students turned back to the first sheet in the
spreadsheet, calculated the forces corresponding to
the different measured angles, introduced the data in
Column D (see Fig. 5), and plotted a graph of the force
as a function of the inverse square of the distance be-
tween the center of the spheres with its corresponding
best-fit line (see Fig. 9).

Fig. 7. The spreadsheet showing the results of the torsion constant
measurement, the needed calculations and data analysis.
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Fig. 8. Graph showing the linear relation between the force exerted to the Coulomb
Balance and the torsion angle.

As expected they got a well approximated
straight line, whose slope has to be Coulomb’s con-
stant times the squared value of the charge. That is,

F = (Kq2)
1

R2
(3)

Students calculated the slope of the straight line in
Column E and the corresponding values of Coulomb’s
constant in Column F (see Fig. 5), taking into account
that q = 4πε0aV (where ε0 = 8.85 × 10–12 F/m, a =
3.8 cm—the radius of the sphere, and V = 6 kV). Its
best estimate [AVERAGE(F3:F11)] was calculated
in Cell F13, and the precision of the measurements
[STDEV(F3:F11)] was calculated in Cell F14.

Since the “accepted” value of Coulomb’s con-
stant is 9 × 109 N m2/C2, we can see that it lies within

Fig. 9. Graph of the electrostatic force exerted by two identical charges as a function
of the inverse square distance between them.

the range determined by the best estimate and the
precision of students’ measurement. The remaining
question is how well students may trust in the num-
ber they obtained in their measurement, that is, what
is the percentage precision they obtained. In this
case we got about 17% (1.32 × 109/7.73 × 109), a
very well justified precision if we take into account
the highest resolution of the different instruments
used.

– 0.5◦ for the resolution of the degree plate, that
is, a percentage resolution that varies from 0.04
to 2.2% for the measured angles.

– 0.05 cm for the resolution of the slide ruler, that
is, a percentage resolution that varies from 0.25
to 1% for the measured distances.
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– 0.1 kV for the resolution of the power supply
voltmeter, that is, a percentage resolution of
1.7%.

– The former measured precision of the torsion
constant, 8.5%.

– An inestimable eye precision in the alignment
measurement of the index marks.

Besides that, one can see in Columns E and F of
Fig. 5 that there is a deviation from the inverse square
relationship at short distances because of the fact that
the charged spheres are not simply point charges.
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